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We demonstrate that the “microscopic” field theory representation, directly derived from the corresponding
master equation, fails to adequately capture the continuous nonequilibrium phase transition of the pair contact
process with diffusion(PCPD). The ensuing renormalization group(RG) flow equations do not allow for a
stable fixed point in the parameter region that is accessible by the physical initial conditions. There exists a
stable RG fixed point outside this regime, but the resulting scaling exponents, in conjunction with the predicted
particle anticorrelations at the critical point, would be in contradiction with the positivity of the equal-time
mean-square particle number fluctuations. We conclude that a more coarse-grained effective field theory ap-
proach is required to elucidate the critical properties of the PCPD.
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I. INTRODUCTION

Phase transitions between different nonequilibrium steady
states are frequently encountered in nature, and determining
the associated critical properties is an important issue. Un-
fortunately, compared with the situation in thermal equilib-
rium, a full classification of nonequilibrium phase transitions
is still in its infancy. We shall focus here on a particular
subclass of nonequilibrium transitions which separate an “ac-
tive” phase, characterized by a fluctuating order parameter
fsr ,td with nonzero averagekfl, from an absorbing state
wherein kfl=0. In the thermodynamic limit, all degrees of
freedom remain strictly frozen in such an inactive, absorbing
phase[1].

The universality classes of such transitions are conve-
niently studied in the framework of reaction-diffusion pro-
cesses, even though other descriptions abound(surface
growth, self-organized criticality) [2]. The most prominent
representative of absorbing state transitions is thecontact
process(CP), for under quite generic conditions, namely,
spatially and temporally local microscopic dynamics, and the
absence of coupling to other slow fields(thus excluding
quenched disorder and the presence of conservation laws),
active to absorbing state transitions fall into the CP univer-
sality class with scaling exponents that also describe critical
directed percolation(DP) clusters[3,4]. Yet the very fact that
despite considerable effort hardly any experiments have to
date unambiguously identified the CP/DP critical exponents
hints at the prevalence of other universality classes. In simu-
lations, theparity-conserving(PC) universality class is also
prominent: represented by one-dimensional branching and
annihilating random walks(BAW’s) A→ sm+1dA,A+A
→x with evenm, it is characterized by local particle num-
ber parity conservation. In contrast, the phase transition in
low-dimensional BAW’s with oddm is governed by DP ex-
ponents[2,5].

Novel critical behavior is to be expected when all in-
volved reactions require the presence of neighboring particle
pairs[4]. Thepair contact process with diffusion(PCPD) or
annihilation/fission model [6] is conveniently defined
through the microscopic reaction rules

A + A→
m

x, A + A→
m8

A, A + A→
s

A + A + A s1d

(the presence of either pair annihilation,m or coagulation
,m8 suffices), supplemented with particle hopping(diffusion
constantD) subject to mutual exclusion. The latter is crucial
for the existence of a well-defined active phase and continu-
ous transition. For without restrictions on the occupation
number per lattice site, the particle density diverges within a
finite time whens.sc=2m+m8 [6]. In the inactive phase,
however, site exclusion should not be relevant. It is then
easily seen that the absorbing state of the PCPD(as in the PC
universality class[5]) is governed by thealgebraic density
decay of the pure pair annihilation process[7], viz., kfstdl
, t−1 in dimensions d.2, kfstdl, t−d/2 for d,2, and
kfstdl, t−1ln t at the (upper) critical dimensiondc=2. In
contrast, in the CP/DP universality class, the inactive phase
is characterized by exponential particle decay and correla-
tions. Recall that here the branching processes merely re-
quire the presence of a single particle: the third reaction in
(1) would simply be replaced withA→A+A. Site exclusion
is not crucial in this case, as long as the pair annihilation or
coagulation reactions are included. Alternatively, the com-
bined first-order reactionsA→x andA→A+A with site ex-
clusion yield a CP/DP continuous phase transition as well.

Holding the ratesm and m8 fixed, there is a critical pro-
duction ratesc at which the transition between the active
nonequilibrium steady state and the absorbing phase occurs.
It is a central issue, in an effort to classify nonequilibrium
phase transitions, to clarify the precise manner in which the
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particle production mechanism defines the properties of both
the absorbing state and the universality class of the transi-
tion, i.e., how it affects scaling properties in the vicinity of
the critical point. Numerical investigations of the PCPD
started with Ref.[8]. It almost constitutes a euphemism to
state that this and the subsequent flurry of numerical work
[9–19] have revealed conflicting views(see Ref.[20] for a
comprehensive overview), for not only are the precise nu-
merical values of the critical exponents still being debated to
this day, but even more striking, the very issue of the PCPD
universality class has remained controversial. Essentially
three scenarios have been put forward: Either the transition
defines a novel independent universality class that is yet to
be characterized, or it belongs to the CP/DP, or even to the
PC class(the latter perhaps becoming less likely with im-
proving simulation accuracy). In addition, the emergence of
different scaling properties depending on the value of the
diffusion rate has been claimed.

This inconclusive numerical situation clearly calls for
analytical approaches to provide further understanding of the
elusive continuous phase transition of the PCPD with re-
stricted particle occupation numbers. A natural starting point
is the standard field-theoretic representation of reaction-
diffusion systems that can be derived directly from the cor-
responding classical master equation[21]. Specifically, dy-
namical renormalization group(RG) studies based on such
“microscopic” field theories were, e.g., successfully applied
to diffusion-limited annihilation [7] and even-offspring
BAWs [5], as well as to the inactive phase of the PCPD
without site occupation restrictions[6]. In either case, par-
ticle anticorrelations govern the asymptotic scaling regime,
as opposed to the typical clustering behavior in the CP/DP
universality class(which includes odd-offspring BAW’s) [3].
Here another coarse-graining step takes the original micro-
scopic master equation representation to Reggeon field
theory, equivalent to a Langevin equation with “square-root”
multiplicative noise, that serves as the appropriate effective
action for the CP/DP critical properties. Thus, one would
hope that the continuous nonequilibrium phase transition in
the PCPD with restricted site occupations should be ame-
nable to these powerful tools as well.

Yet it was only recently demonstrated how site exclusions
can be consistently incorporated into the master equation
field theory formalism[22]. This paper reports our study of
the ensuing action for the PCPD, constructed in Sec. II, care-
fully taking into account the higher-order reactions that be-
come generated through fluctuations, i.e., successive particle
production processes[6]. We shall derive and discuss the
ensuing RG flow equations in Sec. III. We will demonstrate
that there exists in fact no stable RG fixed point in the physi-
cally accessible parameter space of the model(wherein all
reaction rates are non-negative). Remarkably therefore, the
microscopic field theory, albeit directly derived from the
master equation, is not capable of capturing the PCPD criti-
cal point. We interpret the appearance of runaway flows as an
indication that a crucial ingredient was obviously left out
when the(naive) continuum limit was taken[23]. An appro-
priate effective coarse-grained description might require the
explicit introduction of separate density fields for the “inert”
solitary random walkers and the clustered particles, respec-

tively, akin to the explicit treatment of particle pairs and
singlets in Ref.[10]. The RG flow equations do, however,
allow for a fixed point outside the physical region. In Sec. IV
we compute the associated critical exponents to second order
in an expansion around the upper critical dimensiondc=2,
and moreover establish exact scaling relations. But we shall
see that the actual exponent values, when combined with the
predicted particle anticorrelations at the critical point, violate
the positivity of the equal-time mean-square particle fluctua-
tions. Hence this RG fixed point is clearly unphysical. In
conclusion, the construction of a consistent field theory de-
scription of the PCPD remains an open problem. Similar
issues arise also for the closely related models that involve
solely particle triplet or quadruplet reactions[17,24,25].

II. MASTER EQUATION FIELD THEORY
REPRESENTATION OF THE PCPD

The classical master equation kinetics of particles subject
to diffusion and local “chemical” reactions can be mapped
onto a field theory action following standard procedures
[7,21]. However, for the density to remain bounded in the
processes(1) at arbitrary values of the reaction rates, specifi-
cally in the active phase, it is necessary to introduce a
growth-limiting process. In most numerical simulations this
is achieved by further imposing mutual exclusion between
particles. Analytical progress therefore requires a consistent
incorporation of the exclusion constraint. To this end, we
follow Ref. [22], and write down the resulting action corre-
sponding to the processes(1) on a(for the sake of notational
simplicity one-dimensional) lattice (sitesi):

Sfhf̂i,fijg = o
i
E dtSf̂i]tfi + Hmsf̂if̂i+1 − 1d

+
m8

2
fsf̂i − 1df̂i+1 + sf̂i+1 − 1df̂ig

+
s

2
fs1 − f̂i−1de−f̂i−1fi−1 + s1 − f̂i+2de−f̂i+2fi+2g

3 f̂if̂i+1Jfifi+1e
−f̂ifi−f̂i+1fi+1D . s2d

The time-dependent fieldsf̂istd andfistd here originate from
a coherent-state representation employing bosonic creation
and annihilation operators[7,21]. The exclusion constraints
are encoded in the exponential terms[22], and the unre-
stricted model is recovered when all these exponentials are
replaced with unity.

Thus far, the action(2) constitutes an exact representation
of the microscopic processes(1). In order to proceed to a
continuum field theory, which should suffice to describe the
large-scale, long-time behavior in the vicinity of a critical
point, we add a diffusion term(for which we ignore the site
occupation restrictions[26]) and take the(naive) continuum
limit (now in d dimensions) f̂istd→ f̂sr ,td and fistd
→adfsr ,td, with a denoting the original lattice spacing, such

that f̂sr ,td remains dimensionless. This yields

JANSSENet al. PHYSICAL REVIEW E 70, 056114(2004)

056114-2



Sff̂,fg =E ddxE dthf̂s]t − D¹2df − fms1 − f̂2d

+ m8s1 − f̂df̂gf2e−2v f̂f + ss1 − f̂df̂2f2e−3v f̂fj,

s3d

with a microscopic inverse density scalev,ad.
The corresponding classical rate equation(augmented

with diffusion) is readily obtained by solving for the station-
arity conditionsdSff̂ ,fg /df=0, which, as a consequence of
probability conservation in the master equation, is always
satisfied byf̂=1, anddSff̂ ,fg /df̂=0, which then results in

s]t − D¹2dfsr ,td = f2fs − s2m + m8dev fge−3v f. s4d

In contrast with the unrestricted model(where v=0), this
mean-field equation allows for an active state with a finite
particle densityf=v−1lnss /scd, provided s.sc=2m+m8.
Near the now well-defined critical point atsc, we obtain

fssd < v−1fss/scd − 1g , ss − scdb, b = 1. s5d

In the absorbing phasess,scd, the site restrictions do not
matter, and the density decays algebraically as in pure anni-
hilation or coagulation,fstd,fssc−sdtg−1. At the critical
point, this becomes replaced with the slower power law

fstd , svsctd−1/2 , t−d, d = 1/2. s6d

This relation already shows that the scaling of the parameter
v determines the critical exponents. Moreover, scaling analy-
sis tells us that the static correlation length diverges upon
approaching the critical point from the active side according
to jssd,ss−scdn with n=1, whereas the characteristic time
scales astc,jz with diffusive dynamic critical exponentz
=2.

While we clearly need to retain the exclusion parameter in
order to describe the continuous phase transition occurring at
D~s−sc=0, we also note that an expansion to first order in
v suffices. More technically, since the fieldfsr ,td scales as a
particle density, the scaling dimension of the exclusion pa-
rameter isfvg=k−d, wherek represents an arbitrary momen-
tum scale. Superficially, therefore,v constitutes anirrelevant
coupling that flows to zero under scale transformations. We
may thus expand the exponentials in the action(3), keeping
only the lowest-order contributions, which leads to addi-
tional interaction terms. Upon at last performing the field
shift f̂sr ,td=1+f̄sr ,td (whereby final-time contributions,
not explicitly listed here, become eliminated[27]), we arrive
at an action of the form

Sff̄,fg =E dxE dtff̄s]t − D¹2df + Gsf̄df2 + Lsf̄df3

+ ¯ g, s7d

where we have defined thegenerating functions

Gsxd = o
pù1

gpx
p, Lsxd = o

pù1
lpx

p. s8d

Note that probability conservation impliesGs0d=0 and
Ls0d=0. Microscopically, we identify g1=2m+m8−s

=sc−s ,g2=m+m8−2s ,g3=−s ,l1=s3s−4m−2m8dv ,l2

=s9s−6m−4m8dv ,l3=s9s−2m−2m8dv, and l4=3s v.
However, at a coarse-grained level, fluctuations generate the
entire sequence of particle production reactions 2A→ sn
+2dAsnù1d. For instance, two subsequent branching pro-
cesses 2A→3A immediately lead to 2A→4A, and so forth
[6]. This effectively extends the sums in the functions(8) to
all integerp. Unlike in conventional situations, we thus have
to deal with an infinite number of vertices. Lastly we remark
that introducing third-order annihilation reactions of the form
3A→kA (k=0, 1, 2) also produces the terms in the second
line of Eq.(7): Allowing for the back reactions of the particle
production processes is equivalent to “soft” site exclusions.

With the previously introduced scaling dimensions of the
fields ff̄g=k0 and ffg=kd, we find fgpg=k2−d for all cou-
plings in Gsxd, which suggests, as is then confirmed by a
careful analysis of Feynman diagrams, thatdc=2 constitutes
the upper critical dimension here. Sinceflpg=k2s1−dd, the co-
efficients in the functionLsxd, which originates from site
exclusion, are irrelevant neardc=2. Yet because at leastl1 is
required to control the particle density in the active phase
and thereby maintain a continuous transition, it cannot sim-
ply be omitted from the action(7). Once again though we
arrive at the conclusion that terms of higher order inv (i.e.,
contributions,f4 or higher in the action) need not be re-
tained. But despite the presence of apparently infinitely many
marginal couplings, the field theory(7) remains renormaliz-
able. This is best seen by recalling that the choice of the
scaling dimensions for the fields is actually arbitrary as long
as the productff̄fg=kd. Our theory thus contains a redun-
dant variable[28] that we fix conveniently as follows: Upon
introducing recaled fieldss̄=kd/2f̄ ands=k−d/2f, we obtain
fgpg=k2−p d/2 andflpg=k2−sp+1dd/2. Consequently, the critical
control parameter constitutes a relevant perturbation(for
d,4), sincefg1g=k2−d/2, whereasfg2g=fl1g=k2−d indicating
that bothg2 andl1 are marginal atdc=2. Indeed, this proce-
dure is consistent with the critical behavior according to Eq.
(6) in two dimensions, which requires the density to scale
,t−1/2,k rather than,t−1,k2 which is valid in the absorb-
ing phase. All other couplings now acquire negative scaling
dimensions, and therefore become irrelevant for the leading
scaling behavior. This leaves us with the reduced action

Sfs̄,sg =E dxE dtfs̄s]t − D¹2ds+ g1s̄s
2 + g2s̄

2s2 + l1s̄s
3g.

s9d

Thus, the appropriate effective field theory for the critical
point in fact contains only three nonlinear vertices.

III. RENORMALIZATION AND RG FLOW

It is instructive to proceed with the renormalization pro-
gram based on the field theory(7) with infinitely many mar-
ginal couplings and the reduced action(9). One immediately
notices that, to all orders in the perturbation expansion, the
propagators do not become renormalized. Hence there is nei-
ther field nor diffusion constant renormalization, which al-
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ready implies that the dynamic exponent in these field theo-
ries inevitably remainsz=2 exactly, at variance with present
simulation data. Next, for the action(7) we define renormal-
ized parameters according togpCe=ZpgpRDke and lpCe

=Zlp
lpRDk−2+2e with Ce=s4pd−d/2Gs1+e /2d. The renormal-

ization constantsZp and Zlp
are determined by means of

dimensional regularization and minimal subtraction by the
condition that they absorb just the ultraviolet divergences
appearing as poles ine=2−d. After computing the RGb
functions bp=k]kgpR (evaluated in the unrenormalized
theory) and upon introducing the flow parameter,=
−lnskad (wherek is the running momentum scale), we sub-
sequently obtain the corresponding RG flow equations for
the running couplings],gpRs,d=−bps,d, and similarly for the
lpR.

We start with renormalizing the action(9). The vertex
,l1 does not enter any Feynman diagrams that contribute to
the renormalization of g1Ce=Z1g1RDk1+e/2 and g2Ce

=Z2g2RDke. For the latter, we are therefore left with pre-
cisely the structure of the pure annihilation/coagulation field
theory [7], namely, a geometric series of one-loop graphs,
and hence arrive at the exact result

Z1
−1 = Z2

−1 = 1 −
2g2R

e
. s10d

This leavesZl1
in l1Ce=Zl1

l1RDke as the sole renormaliza-
tion constant to be actually determined anew here. To two-
loop order, we find[29]

Zl1

−1 = 1 −
6g2R

e
+

12g2R
2

e2 S1 +
e

2
ln

4

3
D . s11d

From Eqs.(10) we obtain the RG flow equations

],g1/2Rs,d = fe − 2g2Rs,dgg1/2Rs,d. s12d

It follows that the sign ofg1R is invariant under the RG flow,
and the criticalg1R=0 remains fixed. If bothg1R andg2R are
negative, the flow according to Eqs.(12) leads both running
couplings toward −̀ (“Wilson’s gully” ). Only if either pa-
rameter is initially positive can the stable fixed line with
arbitrary g1R and g2R

* =e /2 be reached. Thus, a separatrix
must exist between the fully unstable region in parameter
space and the basin of attraction of the fixed line. A qualita-
tive sketch of the ensuing RG trajectories is depicted in
Fig. 1.

Before we proceed further with a discussion of the RG
flow trajectories, let us consider the field theory(7), and for
the moment omit the irrelevant parameterslp. One is then
concerned with controlling the infinite number of marginally
relevant verticesgp. This is most elegantly achieved by in-
troducing the renormalized counterpart of the generating
function GRsxd=opù1gpRxp [30]. As anticipated, a careful
analysis of the appropriate Feynman diagrams indeed shows
that not only are the renormalizations of thegp interwined,
but also such couplings of arbitrarily high order become gen-
erated. For example, an explicit two-loop calculation results
in

Z2
−1 = 1 −

2g2Cek
−e

D e
−

6g1g3Cek
−e

Dg2e
+

24g1
2g4Ce

2k−2e

D2g2e2

+
4g2

2Ce
2k−2e

D2e2 +
12g1g3Ce

2k−2e

D2e2 S1 +
e

2
ln

4

3
D . s13d

To one-loop order, elementary combinatorics yields[6]

Zp
−1 = 1 −

1

e
o
j=1

p

js j + 1d
gj+1Rgp−j+1R

gpR
, s14d

whencebp=−e gpR+o j=1
p js j +1dgj+1Rgp−j+1R. The ensuing in-

finite hierarchy of one-loop flow equations for thegpR is then
efficiently recast into a single functional RG differential
equation forGRsx,,d [30]:

],GRsx,,d = fe − ]x
2GRsx,,dgGRsx,,d. s15d

Although we shall not explicitly make use of it, one may
derive in a similar fashion the one-loop functional RG flow
equation for the generating functionLR that incorporates all
the couplings induced by the site exclusions:

],LRsx,,d = − 2s1 − edLRsx,,d − GRsx,,d]x
2LRsx,,d

− 3 LRsx,,d]x
2GRsx,,d. s16d

Recall that the initial generating function was a third-
order polynomialG0Rsxd=g1Rx+g2Rx2+g3Rx3 with at least
g3R,0. Upon setting the right-hand side of Eq.(15) to zero,
we find the locally stable nontrivial fixed-point function

GR
* sxd = D x +

e

2
x2 s17d

with arbitrary constantD, whereas the trivial solutionGR
*

=0 is clearly unstable. This result is in fact valid to all orders
in e [31]. Therefore, all running couplingsgpRs,d→0 for p
ù3, and we recover the results(10), (11) and(12) previously
obtained from the reduced action(9). As anticipated,D, the
renormalized counterpart tog1, plays the role of a control
parameter, albeit not a relevant one, since that would have to
scale to infinity under renormalization rather than remain

FIG. 1. Qualitative flow diagram of the RG trajectories in the
sg1,g2d plane. I denotes the stable fixed line; II and III represent the
parts of the separatrix that might collapse in the limiting case with
the negative half axes. The hatched area indicates the absolutely
unstable region. The dash-dotted line corresponds to the initial val-
ues of the model, with 2g1−g2=const.0.
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constant. We assume thatD is a regular function of the initial
rates; i.e., at fixed annihilation and coagulation rates we ex-
pand fors→sc:Dssd.ssc−sdD8sscd, sinceDsscd=0 and
D8sscd.0. Indeed, the pure annihilation and coagulation
model fixed points ats=0 respectively correspond toD=e
(sinceg1=2g2) and D=e /2sg1=g2d [7]. Thus, in the PCPD
inactive phases,sc one should haveD=Osed.0 as well.
Notice that atsc=2m+m8 we haveg2=−3m−m8; hence this
combination of annihilation and coagulation rates has appar-
ently turned negative at the fixed point. One must therefore
worry whether the physically accessible values of the reac-
tion rates actually lie within the basin of attraction of the
nontrivial fixed-point functionGR

* sxd.
Thus we now resume our discussion of the RG trajecto-

ries. On physical grounds one should expect that the flow
would at least reach the line of fixed points encoded by Eq.
(17) if g1R is positive, since this corresponds to the inactive
phase governed by the annihilation/coagulation fixed line.
Yet for this to be true for anyg1R.0, the part of the sepa-
ratrix indicated by II in Fig. 1 must collapse onto the nega-
tive g2 axis, i.e., the separatrix should contain the invariant
hypersurfaceg1=0. This would indeed lead to the standard
RG flow picture: With initial values corresponding to the
inactive phase the RG trajectories approach the annihilation/
coagulation fixed line, critical initial conditions are defined
by the separatrix(which is unstable along one direction), and
finally initial values corresponding to the active phase are to
be found inside the unstable region with flow into the
“gully.”

Yet it is easily seen that the zerosxi with GRsxi ,,d=0 are
fixed by the partial differential equation(15), and conse-
quently also the intervals in which the functionGRsx,,d is
respectively positive or negative. Therefore, if(i) g1R.0,
there exists an open intervalsx0=0,x1.0d wherein
GRsx,,d.0, while GRsx0,1,,d=0. Since initially g3R,0,
however, it follows that the fixed-point function(17) cannot
be reached from the physically allowed region in parameter
space. This is true for arbitrary values ofD and for all
−`,x,`, even if g2R.0. This is rather astonishing be-
cause one would expect that at least deep in the inactive
phase, where the production reactions can be neglected,
GRsx,,d→G`sxd=GR

* sxd as ,→` for all x. It is, however,
obvious that we can assume this limiting relation to hold
only in the first positive interval in an expansion ofGRsxd
with respect tox. We conclude that the difference function
Hsxd=GR

* sxd−G`sxd must display an essential singularity at
x=0, and its expansion in a series ofx produces simply a
zero. However,Hsx1d=GR

* sx1d. A qualitative discussion of
the differential equation(15) indeed supports this assump-
tion. Note here thatGRsx,,d increases most significantly
with , at those values ofx where its curvature is minimal.
(ii ) In the caseg1Rø0 the initial function is negative for all
x.0. Hence the differential equation(15) does not provide
any mechanism that could translateGRsx,,d to positive val-
ues and finally toGR

* sxd, at least in somex intervals, without
producing zeros ofGRsxd along the way. In summary, we
find that our physical initial conditions at the critical point
(with g3R,0 as well asg2R,0 for g1R=D=0) inevitably
take the RG flow from Eq.(15) into the absolutely unstable

region in Fig. 1. Instead of reaching the stable fixed line(17),
we face runaway trajectories, to all orders in the perturbation
expansion.

IV. CRITICAL PROPERTIES AT THE UNPHYSICAL
FIXED POINT

Even though we have just seen that the critical fixed point
g1R=D=0 andg2R

* =e /2 is inaccessible to the RG flow tra-
jectories starting at physical initial parameter values(i.e.,
positive reaction rates), let us nevertheless explore the(hy-
pothetical) ensuing critical behavior. Recall that in the
PCPD, totally neglecting particle exclusion, as encoded in
the parameterl1, suppresses the finite-density steady state.
Hence we retain this(apparently irrelevant) coupling, and
moreover investigate how its RG flow toward zero becomes
renormalized through fluctuations. From the explicit two-
loop result for the associated renormalization constant(11),
we may immediately compute the anomalous dimension

gl1
= k

d ln Zl1

dk
= − 3 e + 3 e2ln

4

3
+ Ose3d. s18d

As is easily seen by investigating the RG equations for the
particle density and its correlation function,gl1

already com-
pletely determines the critical exponents here. This assertion
is also confirmed by directly computing the renormalized
equation of state(upon approaching the transition from the
active side). For D,s−scù0, i.e., in the active phase, one
finds that the steady-state density vanishes asD→0− accord-
ing to kfl,uDub, with

b =
1 + gl1

/2

d − 1 −gl1
/2

. 1 − 2 e + S1 + 3 ln
4

3
De2 + Ose3d,

s19d

while the two-point function correlation length(finite only in
the active phase) diverges asj,uDu−n, where

n−1 = d − 1 −
gl1

2
. 1 +

e

2
−

3

2
e2ln

4

3
+ Ose3d. s20d

Precisely at the critical pointsD=0d the particle density de-
cays asymptotically askfstdl, t−d, with

d =
1

2
+

gl1

4
.

1

2
−

3

4
e +

3

4
e2ln

4

3
+ Ose3d. s21d

Since remarkably the anomalous fluctuation corrections to
the critical exponentsb ,n, andd are solely contained in the
anomalous dimension(18), we may eliminate the latter to
yield the followinghyperscaling relations, valid to all orders
in e=2−d:

2d + 1/n = d, b = 2d/sd − 2dd = dn − 1. s22d

Here we have used the exact result for the dynamic exponent
z=2 and the standard scaling relationb=znd (which also
follows directly from the RG equations). At the critical di-
mensiondc=2, we infer the asymptotically exact scaling be-
havior
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D → 0−:kfl , uDuslnuDud2, s23d

j , uDu−1zlnuDuz−1/2, s24d

D = 0:kfstdl , t−1/2sln td3/2. s25d

Aside from the fact that these exponent values are at odds
with the presently available data from numerical simulations
for the PCPD, they also lead to a serious contradiction,
which confirms again that the fixed line(17) does not repre-
sent a physical system. First, we note that the positive value
g2R

* =e /2 indicates the presence of particle anticorrelations at
this fixed point, precisely as in the pure binary annihilation
or coagulation system. Next, recall that the equal-time den-
sity correlation function of pointlike particles consists of
three contributions,

knsr ,tdnsr 8,tdl = knsr ,tdldsr − r 8d + Csr ,r 8;td + knsr ,tdl

3knsr 8,tdl. s26d

The first term here describes the particles’ Poissonian self-
correlations.Csr ,r 8 ; td represents the density cumulant, i.e.,
the connected correlation function of the density fluctuations,
which is negative in the case of particle anticorrelations.
Upon integrating Eq.(26) over the confining volume and
dividing by the mean particle numberkNstdl, we obtain for a
homogeneous state whereCsr ,r 8 ; td=Csr −r 8 ; td the follow-
ing general expression for the relative mean-square particle
number fluctuations:

kdNstd2l
kNstdl

= 1 +
C̃std
fstd

, s27d

with the mean densityfstd=knsr ,tdl and the spatial integral

of the cumulantC̃std.
In the vicinity of a critical point these quantities scale as

follows:

fstd , A t−b/zn, C̃std , B tsdn−2bd/zn. s28d

The amplitudeA is of course positive, whileB,0 in the case
of anticorrelations(such as in the PC universality class), and
B.0 for positive particle correlations(as prevalent in the
critical DP clusters). Combining Eqs.(27) and (28) yields

kdNstd2l
kNstdl

, 1 +
B

A
tsdn−bd/zn. s29d

Thus, if dn−b.0 the second term dominates the right-hand
side of Eq.(29) asymptotically. For particle anticorrelations
whereB/A,0, this would immediately contradict the posi-
tivity of the left-hand side. Consequently, the previously
found scaling exponents which satisfydn−b=1 (exactly) are
definitely unacceptable.

This is in remarkable contrast to the results obtained for
the pure pair annihilation or coagulation process[7], where
the density and the integrated cumulant obey identical

asymptotic scaling behavior,fstd, C̃std, t−d/2. Hence no

contradiction arises here provideduBu,A. Neither are par-
ticle anticorrelations necessarily excluded at critical points:
For even-offspring BAWs that represent the PC universality
class, a one-loop RG analysis at fixed dimension yieldsn
=3/s10−3dd andb=4/s10−3dd [5]. Hencedn−bø0 in di-
mensionsdødc8=4/3, which is precisely the borderline di-
mension(within the one-loop approximation) for the exis-
tence of the phase transition and the power-law inactive
phase in this system.

V. CONCLUSIONS

We have investigated the microscopic field theory for the
PCPD, as derived directly from the defining master equation,
by means of the dynamic renormalization group. Although
fluctuations generate an infinite chain of particle production
processesA+A→ sn+2dA, the theory remains controlled and
renormalizable in the inactive phase[6], where it is governed
by the fixed point of the pure annihilation/coagulation model
[7]. This is most elegantly seen by means of a functional RG
approach[30]. In order to render the particle density finite in
the active phase, we have incorporated site occupation re-
strictions following the methods developed in Ref.[22]. On
the mean-field level, this indeed leads to a continuous tran-
sition separating the active from the absorbing phase. How-
ever, a detailed analysis of the RG flow equations shows that
the action(7) does not adequately capture the critical prop-
erties of the PCPD:(i) There is no stable RG fixed point in
the physical region of parameter space, and instead one ob-
tains runaway trajectories;(ii ) the scaling exponents found at
the RG fixed point in the unphysical regime violate the posi-
tivity of the mean-square particle number fluctuations.

We emphasize that these statements in fact hold to all
orders of the perturbation expansion and even apply to the
nonperturbative “exact” RG approach. This failure really re-
sides in the starting field theory action itself, not in its sub-
sequent evaluation. Obviously, a crucial ingredient was left
out when the naive continuum limit was performed. We can
only speculate as to what the potential remedies might be, in
part motivated by pictures from simulation studies, where
positive particle correlations are observed both at the critical
point and in the active phase: Perhaps one needs to explicitly
introduce separate fields respectively for the positively cor-
related clustered particles and the solitary random walkers as
coupled slow variables. The challenge then, however, is to
write down a consistent coarse-grained field theory that cor-
rectly accounts for the internal stochastic noise generated by
the reactions. To date, therefore, an apt field theory descrip-
tion of the PCPD remains an open and difficult problem.

Finally, we remark that the same problems arise with the
master equation field theory when the PCPD order parameter
is coupled to a static, conserved background field[32]. The
above statements also apply to active-to-absorbing transi-
tions in related higher-order reactions[17,24,25]. For purely
triplet reactions 3A→mA (m=0, 1, 2) and 3A→ sn+3dA one
readily derives a field theory representation corresponding to
the action(7), essentially just raising the powers off by one
in the nonlinear vertices. In the inactive phase, the theory can
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again be analyzed by means of the functional RG analogous
to Eq. (15), leading to the upper critical dimensiondc=1,
where the particle density decays according tokfstdl
,st−1ln td1/2 [7]. At the hypothetical critical point one would
obtain a slower critical decaykfstdl, t−1/3sln td4/3. But, once
again, the critical fixed point cannot be reached by the RG
flow starting at physical parameter values. Moreover, the
presence of a redundant parameter even questions the valid-
ity of identifying d=1 as the critical dimension. Likewise,
the expectation that in general fourth-order processes are
merely described by mean-field scaling exponents may not
be borne out by a correct treatment.
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