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Pair contact process with diffusion: Failure of master equation field theory
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We demonstrate that the “microscopic” field theory representation, directly derived from the corresponding
master equation, fails to adequately capture the continuous nonequilibrium phase transition of the pair contact
process with diffusionfPCPD. The ensuing renormalization grogRG) flow equations do not allow for a
stable fixed point in the parameter region that is accessible by the physical initial conditions. There exists a
stable RG fixed point outside this regime, but the resulting scaling exponents, in conjunction with the predicted
particle anticorrelations at the critical point, would be in contradiction with the positivity of the equal-time
mean-square particle number fluctuations. We conclude that a more coarse-grained effective field theory ap-
proach is required to elucidate the critical properties of the PCPD.
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I. INTRODUCTION Novel critical behavior is to be expected when all in-

Phase transitions between different nonequilibrium steadyo!ved reactions require the presence of neighboring particle
states are frequently encountered in nature, and determinirRfirs[4]- The pair contact process with diffusio®®CPD or
the associated critical properties is an important issue. Un@nnihilation/fission model [6] is conveniently defined
fortunately, compared with the situation in thermal equilib- through the microscopic reaction rules
.riumz a.fulll clz_issification of nonequilibrium phase trans:itions L o -
is still in its infancy. We shall focus here on a particular A+A—D, A+A—A A+A—A+A+A (1)
subclass of nonequilibrium transitions which separate an “ac-
tive” phase, characterized by a fluctuating order parameteithe presence of either pair annihilatierw. or coagulation
¢(r ,t) with nonzero averagés), from an absorbing state ~u' sufficeg, supplemented with particle hoppingjiffusion
wherein(¢$)=0. In the thermodynamic limit, all degrees of constantD) subject to mutual exclusion. The latter is crucial
freedom remain strictly frozen in such an inactive, absorbingor the existence of a well-defined active phase and continu-
phase[1]. ous transition. For _W|thout restrictions on _the occupation

The universality classes of such transitions are convebumber per lattice site, the particle density diverges within a
niently studied in the framework of reaction-diffusion pro- finite time wheno>o=2u+u’ [6]. In the inactive phase,
cesses, even though other descriptions abo(suj'face however, site exclusion Should not be relevant. It is then
growth, self-organized criticalily[2]. The most prominent €asily seen that the absorbing state of the PC&0n the PC
representative of absorbing state transitions is ¢hetact ~ Universality clasg5]) is governed by thalgebraic density
process(CP), for under quite generic conditions, namely, decay of the pure pair annihilation procgss, viz., (¢(t))
spatially and temporally local microscopic dynamics, and the~t™ in dimensionsd>2, (¢(t))~t%2 for d<2, and
absence of coupling to other slow fieldthus excluding (#(t))~tnt at the (uppep critical dimensiond.=2. In
guenched disorder and the presence of conservation),lawsontrast, in the CP/DP universality class, the inactive phase
active to absorbing state transitions fall into the CP univeris characterized by exponential particle decay and correla-
sality class with scaling exponents that also describe criticaions. Recall that here the branching processes merely re-
directed percolatioDP) clusters[3,4]. Yet the very fact that quire the presence of a single particle: the third reaction in
despite considerable effort hardly any experiments have tol) would simply be replaced with— A+A. Site exclusion
date unambiguously identified the CP/DP critical exponentss not crucial in this case, as long as the pair annihilation or
hints at the prevalence of other universality classes. In simueoagulation reactions are included. Alternatively, the com-
lations, theparity-conserving(PC) universality class is also bined first-order reactionr&— @ and A— A+A with site ex-
prominent: represented by one-dimensional branching andusion yield a CP/DP continuous phase transition as well.
annihilating random walks(BAW’'s) A—(m+1)A,A+A Holding the ratesu and u’ fixed, there is a critical pro-
— @ with evenm, it is characterized by local particle num- duction rateo, at which the transition between the active
ber parity conservation. In contrast, the phase transition imonequilibrium steady state and the absorbing phase occurs.
low-dimensional BAW's with oddm is governed by DP ex- It is a central issue, in an effort to classify nonequilibrium
ponents[2,5]. phase transitions, to clarify the precise manner in which the
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particle production mechanism defines the properties of botkively, akin to the explicit treatment of particle pairs and
the absorbing state and the universality class of the transsinglets in Ref[10]. The RG flow equations do, however,
tion, i.e., how it affects scaling properties in the vicinity of allow for a fixed point outside the physical region. In Sec. IV
the critical point. Numerical investigations of the PCPD we compute the associated critical exponents to second order
started with Ref[8]. It almost constitutes a euphemism 1o jn an expansion around the upper critical dimensipr 2,

state that this and the subsequent flurry of numerical worlgnd moreover establish exact scaling relations. But we shall
[9-19 have revealed conflicting viewsee Ref[20] for a  gee that the actual exponent values, when combined with the
comprehensive overviewfor not only are the precise nu- pragicted particle anticorrelations at the critical point, violate
merical values of the critical exponents still being debated tqnq hositivity of the equal-time mean-square particle fluctua-
this day, but even more striking, the very issue of the F)CPI:?ions. Hence this RG fixed point is clearly unphysical. In

universality plass has remained contr.ovgr5|al. Essent'.@"%onclusion, the construction of a consistent field theory de-
three scenarios have been put forward: Either the transition

defines a novel independent universality class that is yet tgcnpuon .Of the PCPD remains an open prablem. S_|m|lar
be characterized, or it belongs to the CP/DP, or even to thEgSues arise alsp for the closely reIated_ models that involve
PC class(the latter perhaps becoming less likely with im- solely particle triplet or quadruplet reactiofs,24,23.
proving simulation accuragyln addition, the emergence of
different scaling properties depending on the value of the
diffusion rate has been claimed. Il. MASTER EQUATION FIELD THEORY

This inconclusive numerical situation clearly calls for REPRESENTATION OF THE PCPD

analytical approaches to provide further understanding of the The classical master equation kinetics of particles subject
elusive continuous phase transition of the PCPD with ey, giffusion and local “chemical” reactions can be mapped
stricted particle occupation numbers. A natural starting poinpnto 5 field theory action following standard procedures
is the standard field-theoretic representation of reactionr7 21, However, for the density to remain bounded in the
diffusion systems that can be derived directly from the corprgcessesl) at arbitrary values of the reaction rates, specifi-
responding classical master equati@i]. Specifically, dy-  ca|ly in the active phase, it is necessary to introduce a
namical renormalization groufRG) studies based on such grouth.limiting process. In most numerical simulations this
microscopic” field theories were, e.g., successfully appliedis achieved by further imposing mutual exclusion between
to diffusion-limited annihilation [7] and even-offspring particles. Analytical progress therefore requires a consistent
BAWSs [5], as well as to the inactive phase of the PCPDjycororation of the exclusion constraint. To this end, we
without site occupation restrictior{§]. In either case, par- fo|jow Ref. [22], and write down the resulting action corre-

ticle anticorrelations govern the gsymptotic_ scf'aling regimesponding to the processes on a(for the sake of notational
as opposed to the typical clustering behavior in the CP/DPsimpIicity one-dimensionaliattice (sitesi):

universality clasgwhich includes odd-offspring BAW)93].

Here another coarse-graining step takes the original micro- _ -~ - ~ o~
scopic master equation representation to Reggeon fielgS i i1 = E f dt( bion + {“(d’id’”l_ 1)
theory, equivalent to a Langevin equation with “square-root” '

multiplicative noise, that serves as the appropriate effective UM - - N

action for the CP/DP critical properties. Thus, one would +?[(¢i ~ D+ (b~ Dl

hope that the continuous nonequilibrium phase transition in

the PCPD with restricted site occupations should be ame- +Z[(1_;ﬁ )e‘&i-1¢i-1+(1 ~ & )e“%i+2‘f’i+2]
nable to these powerful tools as well. 2 -t 2

Yet it was only recently demonstrated how site exclusions o
can be consistently incorporated into the master equation X iy ¢i¢i+le—¢i¢a—¢i+1¢i+1>_ 2)
field theory formalism22]. This paper reports our study of

the ensuing action for the PCPD, constructed in Sec. Il, cares I L5 A -
fully taking into account the higher-order reactions that be?rhe time-dependent fields (t) and(t) here originate from

come generated through fluctuations, i.e., successive particf"e cohere_n_t-s';ate representation employing basonic cr eation
production processefb]. We shall derive and discuss the and anmhllathn 0perator[s7,21]: The exclusion constraints
ensuing RG flow equations in Sec. Ill. We will demonstrate®© encoded N the exponential terf2], and the unre-
that there exists in fact no stable RG fixed point in the physi_stnc:ted mo.del is recovered when all these exponentials are
: . replaced with unity.
cally accessible parameter space of the mauierein all Thus far, the actioii2) constitutes an exact representation
reaction rates are non-negativ®kemarkably therefore, the f th A . & | der t P dqt
microscopic field theory, albeit directly derived from the of the microscopic proces_seg )- In or er o proceed to a
master equation, is not capable of capturing the PCPD criticontinuum field theory, which should suffice to describe the

cal point. We interpret the appearance of runaway flows as algrge—scale, long-time behavior in the vicinity of a critical

indication that a crucial ingredient was obviously left out point, we add a .dIf:fUSIOI‘] terrtfor which we ignore t.he site
when the(naive) continuum limit was takefi23]. An appro- occupation restrictionf26]) and tgke the{Analv@ continuum
priate effective coarse-grained description might require thé'm'td (now in d dimensiong ¢(t)—¢(r,t) and ¢ ()
explicit introduction of separate density fields for the “inert” —2a°@(r ), with a denoting the original lattice spacing, such
solitary random walkers and the clustered particles, respedhat ¢(r ,t) remains dimensionless. This yields
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. . . =0.—0,Q=put+pu’ —20,03=-0,\=(30—4u-2u")v, N,
Sé.¢]1= f ddxf dt{¢(d,— DV?) ¢ -~ [u(1 - ¢°) =(90-6u—4u")v,A\3=(90-2u-2u")v, and N;=30v.
o . o A However, at a coarse-grained level, fluctuations generate the
+u'(1- ) pldPe™® 9P+ o(1 - p) PP pPe® 99}, entire sequence of particle production reactions—2(n

3) +2)A(n=1). For instance, two subsequent branching pro-

cesses B— 3A immediately lead to 2—4A, and so forth

with a microscopic inverse density scale-a’. [6]. This effectively extends the sums in the functigBsto
The corresponding classical rate equati@ugmented all integerp. Unlike in conventional situations, we thus have
with diffusion) is readily obtained by solving for the station- to deal with an infinite number of vertices. Lastly we remark
arity conditionség ¢, ¢/ §¢=0, which, as a consequence of that introducing third-order annihilation reactions of the form
probability conservation in the master equation, is always3A— KA (k=0, 1, 2 also produces the terms in the second

satisfied byp=1, anddS ¢, ]/ 56=0, which then results in  line of Eq.(7): Allowing for the back reactions of the particle

production processes is equivalent to “soft” site exclusions.
(6,=DVI)(r,t) = ¢ o~ u+pu)e ?le® ¢, (4) With the previously introduced scaling dimensions of the

In contrast with the unrestricted modekhere v=0), this ~ fields [yz]=l<° and[¢]=«", we find [go]=+«*" for all cou-
mean-field equation allows for an active state with a finitePlings in G(x), which suggests, as is then confirmed by a

particle density¢=vlIn(o/oy), provided o> o.=2u+u'. careful analysis of Feynman diagrams, that 2 constitutes
Near the now well-defined critical point at, we obtain the upper critical dimension here. Sinjog,]=«**"?, the co-
e o Y (ol - 1 IRV _1 5 efficients in the functionA(x), which originates from site

¢lo) =v {(olo) -1~ (=00’ B=1. (5  gyclusion, are irrelevant nedg=2. Yet because at leasi is

In the absorbing phas@r< o), the site restrictions do not required to cont_rol _the partit_:le density i_n_the_active phgse
matter, and the density decays algebraically as in pure annnd thereby maintain a continuous transition, it cannot sim-
hilation or coagulation,g(t) ~[(g.—o)t]™L. At the critical ~ Ply be omitted from the actio7). Once again though we

point, this becomes replaced with the slower power law ~ arrive at the conclusion that terms of higher ordevig.e.,
contributions~¢* or higher in the actionneed not be re-

B(t) ~ (o) M~ 17, 5=1/2. (6)  tained. But despite the presence of apparently infinitely many

This relation already shows that the scaling of the parametdp@rginal couplings, the field theoly) remains renormaliz-

v determines the critical exponents. Moreover, scaling analy@ble. This is best seen by recalling that the choice of the

sis tells us that the static correlation length diverges uporsc@ling dimensions for the fields is actually arbitrary as long

approaching the critical point from the active side accordinggs the produckpe]=«". Our theory thus contains a redun-

to £(0) ~ (07— 0)” with v=1, whereas the characteristic time dant variableg28] that we fix conveniently as follows: Upon

scales ag.~ & with diffusive dynamic critical exponent  introducing recaled fields= k¥2¢ ands=«x"%2¢, we obtain

=2. [9p]=«>P 92 and[\,]=«*>"P*D92 Consequently, the critical
While we clearly need to retain the exclusion parameter ircontrol parameter constitutes a relevant perturbatiiom

order to describe the continuous phase transition occurring at< 4), since[g,]=«>"%2, whereagg,]=[\,]=«*>%indicating

Axg=0,=0, we also note that an expansion to first order inthat bothg, and\, are marginal atl.=2. Indeed, this proce-

v suffices. More technically, since the fiedddr ,t) scales as a dure is consistent with the critical behavior according to Eq.

particle density, the scaling dimension of the exclusion pa¢6) in two dimensions, which requires the density to scale

rameter iv]=«"9, wherex represents an arbitrary momen- ~t-12— x rather than~t~1~ 2 which is valid in the absorb-

tum scale. Superficially, therefore constitutes airrelevant  ing phase. All other couplings now acquire negative scaling

coupling that flows to zero under scale transformations. Welimensions, and therefore become irrelevant for the leading

may thus expand the exponentials in the acti®n keeping  scaling behavior. This leaves us with the reduced action

only the lowest-order contributions, which leads to addi-

tional interaction terms. Upon at last performing the field 9ss] =J dxf di[S(5, - DV2)s+ g;582 + g,8262 + \;55%].

shift ¢(r,t)=1+¢(r,t) (whereby final-time contributions,

not explicitly listed here, become eliminatg2l7]), we arrive 9

at an action of the form _ ) _ N
Thus, the appropriate effective field theory for the critical

point in fact contains only three nonlinear vertices.

S4.6]= f ix f G 90k~ DVAp+ G(B #2+ A(B

+ee ], (7) IIl. RENORMALIZATION AND RG FLOW
where we have defined tlgenerating functions It is instructive to proceed with the renormalization pro-
: _ gram based on the field theofy) with infinitely many mar-
G = gl g, A(X) = gl Apx®. (8) ginal couplings and the reduced acti@. One immediately

notices that, to all orders in the perturbation expansion, the
Note that probability conservation implie&(0)=0 and propagators do not become renormalized. Hence there is nei-
A(0)=0. Microscopically, we identify g;=2u+u’'-c  ther field nor diffusion constant renormalization, which al-
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ready implies that the dynamic exponent in these field theo-
ries inevitably remaing=2 exactly, at variance with present
simulation data. Next, for the actigi@) we define renormal-
ized parameters according tggc =Z,0,rDk¢ and A,C,
:pr)\pRDK‘Z+2€ with C.=(4m)™¥ (1+e/2) The renormal-
ization constantsZ, and Zk are determined by means of
dimensional regulanzauon and minimal subtraction by the
condition that they absorb just the ultraviolet divergences
appearing as poles ia=2-d. After computing the RGB
functions B,=«d,gpr (evaluated in the unrenormalized
theory) and upon introducing the flow parametdi=
—In(xa) (wherex is the running momentum scajave sub- o . S
sequently obtain the corresponding RG flow equations for FIG. 1. Qualitative flow dlagram of t_he RG trajectories in the
the running Couplinggeng((f):—,Bp((f), and similarly for the (91,9,) plane. | denot_es the st_able fixed Ilne_; 1l and_ II! _represent the
Ao parts of the separatrix that might collapse in the limiting case with
p?Ne start with renormalizing the actiof®). The vertex the negative half axes. The hatched area indicates the absolutely
~\, does not enter any Feynman diagrams that contribute tunstable region. The dash-dotted line corresponds to the initial val-
the renormalization of g,C.=Z,g;rD<*? and g,C. o of the model, with @ ~g,=const-0.
=Z,9,rDk¢. For the latter, we are therefore left with pre-
cisely the structure of the pure annihilation/coagulation field

—€ —€ 2 2 - €
Zl=1- 202Cck™°  60195Cex + 24979,Cex”?

theory [7], namely, a geometric series of one-loop graphs, De Dg,e D?g,€
and hence arrive at the exact result 2 o 2 —9e
4g5C%«k 129,0sCik 4
2 + D722 + D22 ( 2In3> (13
Zt=7t=1-2F, (10)
€ To one-loop order, elementary combinatorics yiglés
This leavesZ, in \;C.=Z, \rD«* as the sole renormaliza- P 9110
tion constant to be actually determined anew here. To two- z'=1 ——E j(j + 1) SR (14)
loop order, we find29] €j=1 YR
whenceB,=—€ gor+2/-1j(j + 1)0j+1r0p-j+1r The ensuing in-
71l-1- 69_2R 1292R(1 In4> (11) finite hierarchy of one-loop flow equations for thgx is then
M € é 2 3 efficiently recast into a single functional RG differential

equation forGg(x, €) [30]:
9¢Gr(x, ) = [€ = EGr(X, €)IGR(X, (). (15)

7R 0) = L€~ 205r(0)]au2r(0). 12 Although we shall not explicitty make use of it, one may
It follows that the sign ofyk is invariant under the RG flow, derive in a similar fashion the one-loop functional RG flow
and the criticalg;z=0 remains fixed. If botly;5 andg,g are  €quation for the generating functioky, that incorporates all
negative, the flow according to Eq4.2) leads both running the couplings induced by the site exclusions:

From Egs.(10) we obtain the RG flow equations

couplings toward e (“Wilson’s gully”). Only if either pa- —_ _ _
rameter is initially positive can the stable fixed line with TAROG6) = = 21 = AR ) =GR O FARKO)
arbitrary g,z and g,q=€/2 be reached. Thus, a separatrix - 3 AR(X, €)ZGRr(X,€). (16)

must exist between the fully unstable region in parameter

space and the basin of attraction of the fixed line. A qualita- Recall that the initial ge”eraﬂng f“”CEO”. was a third-
tive sketch of the ensuing RG trajectories is depicted in order polynomialGog(x)= = G1RXT QX" G3rX with at least
Fig. 1. 03r<0. Upon setting the right-hand side of E45) to zero,

Before we proceed further with a discussion of the RGWE find the locally stable nontrivial fixed-point function

flow trajectories, let us consider the field the@®), and for . €

the moment omit the irrelevant parametags One is then Gr(X) =A x+ EXZ (17)
concerned with controlling the infinite number of marginally

relevant verticeg),. This is most elegantly achieved by in- with arbitrary constant\, whereas the trivial solutioiGg
troducing the renormalized counterpart of the generating=0 is clearly unstable. This result is in fact valid to all orders
function Gg(x)=2,=19prX" [30]. As anticipated, a careful in e [31]. Therefore, all running couplings,x(€)—0 for p
analysis of the appropriate Feynman diagrams indeed shows 3, and we recover the resul(tk0), (11) and(12) previously
that not only are the renormalizations of thginterwined,  obtained from the reduced acti@8). As anticipatedA, the
but also such couplings of arbitrarily high order become genrenormalized counterpart tg,, plays the role of a control
erated. For example, an explicit two-loop calculation resultgparameter, albeit not a relevant one, since that would have to
in scale to infinity under renormalization rather than remain
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constant. We assume thatis a regular function of the initial region in Fig. 1. Instead of reaching the stable fixed (b8,

rates; i.e., at fixed annihilation and coagulation rates we exwe face runaway trajectories, to all orders in the perturbation

pand foro— o:A(0) = (0.~ 0)A’(0¢), sinceA(o)=0 and  expansion.

A’(0y)>0. Indeed, the pure annihilation and coagulation

model fixed points atr=0 respectively correspond th=¢e IV. CRITICAL PROPERTIES AT THE UNPHYSICAL

(sinceg;=2g,) and A=¢€/2(g;=0,) [7]. Thus, in the PCPD FIXED POINT

inactive phaser <o, one should haveA=0(¢) >0 as well. _ . i )

Notice that ato,=2u+ ' we haveg,=—3u—-pu’; hence this Even though*we havg Jyst seen 'that the critical fixed point

combination of annihilation and coagulation rates has appa@ir=4=0 andg,z=€/2 is inaccessible to the RG flow tra-

ently turned negative at the fixed point. One must thereforéectories starting at physical initial parameter values.,

worry whether the physically accessible values of the reacPositive reaction ratgslet us nevertheless explore ttiey-

tion rates actually lie within the basin of attraction of the pothetica) ensuing critical behavior. Recall that in the

nontrivial fixed-point functiorG*R(x). PCPD, totally neglecting particle exclusion, as encoded in
Thus we now resume our discussion of the RG trajectothe parametek;, suppresses the finite-density steady state.

ries. On physical grounds one should expect that the floviience we retain thigapparently irrelevantcoupling, and

would at least reach the line of fixed points encoded by Egmoreover investigate how its RG flow toward zero becomes

(17) if g1 is positive, since this corresponds to the inactiverenormalized through fluctuations. From the explicit two-

phase governed by the annihilation/coagulation fixed lineloop result for the associated renormalization consgamy,

Yet for this to be true for ang;g>0, the part of the sepa- we may immediately compute the anomalous dimension

ratrix indicated by Il in Fig. 1 must collapse onto the nega-

tive g, axis, i.e., the s.eparatrix.should contain the invariant din 2y ——3¢+3 ezlnﬂ +0(e). (19)

hypersurfaceg; =0. This would indeed lead to the standard dx 3

RG flow picture: With initial values corresponding to the ) ) ) L )

inactive phase the RG trajectories approach the annihilation/ A_S IS eas"Y seen F’y investigating the_ RG equations for the

coagulation fixed line, critical initial conditions are defined Particle density and its correlation functiop,, already com-

by the separatrixwhich is unstable along one directiprand _pletely deter_mlnes the c_rltlcal exponents here. This assertion

finally initial values corresponding to the active phase are tdS also confirmed by directly computing the renormalized

be found inside the unstable region with flow into the €quation of statéupon approaching the transition from the

“gully.” active sidg. ForA~o-0.=0, i.e., in the active phase, one
Yet it is easily seen that the zergswith Gg(x;,¢)=0 are  finds that the steady-state density vanishes as0™ accord-

fixed by the partial differential equatio(5), and conse- NG 10 (¢)~[Al”, with
quently also the intervals in which the functi@g(x, ) is

M=K

1+y./2
respectively positive or negative. Therefore,(iif g;r>0, = LS =1-2¢€+ (1 +3 |nf)52 +0(e),
there exists an open intervalx,=0,x,>0) wherein d-1-n,/2 3
Gr(x,€)>0, while Gg(xg1,€)=0. Since initially g;zr<0, (19)

however, it follows that the fixed-point functiqi7) cannot

be reached from the physically allowed region in parametevhile the two-point function correlation lengtfinite only in
space. This is true for arbitrary values af and for all  the active phagediverges ag~[A[™, where

—0o<x<w, even if g,g>0. This is rather astonishing be-

cause one would expect that at least deep in the inactive yl=d-1 RS 1+5- §62|n‘_1 +0(&). (20
phase, where the production reactions can be neglected, 2 2 2 3
Gr(X,€) — G..(x)=Gr(x) as { — for all x. It is, however,
obvious that we can assume this limiting relation to hold
only in the first positive interval in an expansion Gk(x)
with respect tox. We conclude that the difference function 1 »“ 1 3 3. 4
H(x)=Gg(X)—G..(x) must display an essential singularity at S=+—t=Z-Z¢+ Zezlng +0(€%). (21
x=0, and its expansion in a series fproduces simply a
Zero. However,H(xl):G*R(xl). A qualitative discussion of Since remarkably the anomalous fluctuation corrections to
the differential equatior{15) indeed supports this assump- the critical exponentg, v, and § are solely contained in the
tion. Note here thaiGg(x,¢) increases most significantly anomalous dimensiofil8), we may eliminate the latter to
with ¢ at those values ot where its curvature is minimal. yield the followinghyperscaling relationsvalid to all orders

(i) In the casgg;gr=<0 the initial function is negative for all in e=2-d:

x>0. Hence the differential equatiqii5) does not provide

any mechanism that could transla®a(x, ¢) to positive val- 26+1lv=d, p=248/(d-28)=dv-1. (22)

ues and finally t@Gg(x), at least in some intervals, without  Here we have used the exact result for the dynamic exponent
producing zeros ofGg(x) along the way. In summary, we z=2 and the standard scaling relatigixzvé (which also

find that our physical initial conditions at the critical point follows directly from the RG equationsAt the critical di-
(with g3r<0 as well asg,r<0 for g;g=A=0) inevitably = mensiond.=2, we infer the asymptotically exact scaling be-
take the RG flow from Eq(15) into the absolutely unstable havior

Precisely at the critical pointA=0) the particle density de-
cays asymptotically aép(t)) ~t=%, with
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A—0{¢p)~ |A|(In|A|)2, (23) contradiction arises here provid¢l| <A. Neither are par-
ticle anticorrelations necessarily excluded at critical points:
For even-offspring BAWSs that represent the PC universality
class, a one-loop RG analysis at fixed dimension yields
=3/(10-3d) and 3=4/(10-3) [5]. Hencedv-B=<0 in di-
A=0xe(t)) ~ tH2(In 1)32, (25 mensionsd<d.=4/3, which is precisely the borderline di-
Orgension(within the one-loop approximatigrfor the exis-

Aside from the fact that these exponent values are at od f the oh g d th | X .
with the presently available data from numerical simulationd€"c€ ©Of the phase transition and the power-law inactive
phase in this system.

for the PCPD, they also lead to a serious contradiction!
which confirms again that the fixed lin&7) does not repre-
sent a physical system. First, we note that the positive value

0.r=€/2 indicates the presence of particle anticorrelations at V. CONCLUSIONS

this fixed point, precisely as in the pure binary annihilation , . ) o
or coagulation system. Next, recall that the equal-time den- We have investigated the microscopic field theory for the

sity correlation function of pointlike particles consists of PCPD; as derived directly from the defining master equation,
three contributions, by means of the dynamic renormalization group. Although

fluctuations generate an infinite chain of particle production
(n(r,Hn(r’, £y =(n(r,))8r —=r') + C(r,r':t) +{n(r,t)) processes\+A— (n+2)A, the theory remains controlled and
, renormalizable in the inactive phafg, where it is governed
x{n(r’,1). (26) by the fixed point of the pure annihilation/coagulation model

The first term here describes the particles’ Poissonian self/]- This is most elegantly seen by means of a functional RG

correlations C(r,r’:t) represents the density cumulant, i.e., approacH30]. In order to render the particle density finite in

the connected correlation function of the density fluctuationsth® a}ctlvef p?lhage, Whe havehlncorporalted Site occupation re-
which is negative in the case of particle anticorrelations Strictions following the methods developed in Rg#2]. On

Upon integrating Eq(26) over the confining volume and thg mean-fielql level, this_ indeed leads to a_continuous tran-
dividing by the mean particle numbéx(t)), we obtain for a sition separ_atlng the ag:tlve from the absorbm_g phase. How-
homogeneous state whe@ér ,r’:t)=C(r 1) the follow- ever, a_detalled analysis of the RG flow equations §hows that
ing general expression for the relative mean-square particltehe. action(7) does not adquately capture thg crmcal' prop-
number fluctuations: erties of _the PC_PD(l) There is no stable RG f_|xed point in
' the physical region of parameter space, and instead one ob-
(N(D?) 16 ) tains runaway trajectoriegij) the scaling exponents found at
A A Y -y (27) the RG fixed point in the unphysical regime violate the posi-
(N(1)) #(t) tivity of the mean-square particle number fluctuations.

We emphasize that these statements in fact hold to all

orders of the perturbation expansion and even apply to the

£~ [AHIn[AIY2, (24)

with the mean densityy(t) =(n(r ,t)) and the spatial integral

of the cumulantC(t). nonperturbative “exact” RG approach. This failure really re-
In the vicinity of a critical point these quantities scale assides in the starting field theory action itself, not in its sub-
follows: sequent evaluation. Obviously, a crucial ingredient was left
5 out when the naive continuum limit was performed. We can
d(t) ~AtF?  C(t) ~ B tdr2p/z, (28)  only speculate as to what the potential remedies might be, in

part motivated by pictures from simulation studies, where
The amplitudeA is of course positive, whilB <0 in the case  positive particle correlations are observed both at the critical
of anticorrelationgsuch as in the PC universality clasand  point and in the active phase: Perhaps one needs to explicitly
B>0 for positive particle correlationgs prevalent in the introduce separate fields respectively for the positively cor-

critical DP clusters Combining Eqs(27) and(28) yields related clustered particles and the solitary random walkers as
coupled slow variables. The challenge then, however, is to

(N®)? 1+ Et(dy-g)/u (29)  Write down a consistent coarse-grained field theory that cor-

(N(1)) A ' rectly accounts for the internal stochastic noise generated by

the reactions. To date, therefore, an apt field theory descrip-
Thus, ifdv—p>0 the second term dominates the right-handtion of the PCPD remains an open and difficult problem.
side of Eq.(29) asymptotically. For particle anticorrelations  Finally, we remark that the same problems arise with the
whereB/A<0, this would immediately contradict the posi- master equation field theory when the PCPD order parameter
tivity of the left-hand side. Consequently, the previouslyis coupled to a static, conserved background f[8#]. The
found scaling exponents which satisfy—B=1 (exactly are  apove statements also apply to active-to-absorbing transi-
definitely unacceptable. tions in related higher-order reactiofs7,24,25. For purely
This is in remarkable contrast to the results obtained fofyriplet reactions 83— mA(m=0, 1, 2 and 3A— (n+3)A one
the pure pair annihilation or coagulation proc€gs where  (eadily derives a field theory representation corresponding to
the density and the integrated cumulant obey identicajhe action(7), essentially just raising the powers ¢fby one
asymptotic scaling behaviow(t) ~ C(t) ~t™¥2, Hence no in the nonlinear vertices. In the inactive phase, the theory can
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